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CONVERGENT NETWORK APPROXIMATION FOR THE
CONTINUOUS EUCLIDEAN LENGTH CONSTRAINED MINIMUM

COST PATH PROBLEM∗
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Abstract. In many path-planning situations we would like to find a path of constrained Eu-
clidean length in R

2 that minimizes a line integral. We call this the Continuous Length-Constrained
Minimum Cost Path Problem (C-LCMCPP). Generally, this will be a nonconvex optimization
problem, for which continuous approaches ensure only locally optimal solutions. However, network
discretizations yield weight constrained network shortest path problems (WCSPPs), which can in
practice be solved to global optimality, even for large networks; we can readily find a globally op-
timal solution to an approximation of the C-LCMCPP. Solutions to these WCSPPs yield feasible
solutions and hence upper bounds. We show how networks can be constructed, and a WCSPP in
these networks formulated, so that the solutions provide lower bounds on the global optimum of the
continuous problem. We give a general convergence scheme for our network discretizations and use
it to prove that both the upper and lower bounds so generated converge to the global optimum of
the C-LCMCPP, as the network discretization is refined. Our approach provides a computable lower
bound formula (of course, the upper bounds are readily computable). We give computational results
showing the lower bound formula in practice, and compare the effectiveness of our network construc-
tion technique with that of standard grid-based approaches in generating good quality solutions. We
find that for the same computational effort, we are able to find better quality solutions, particularly
when the length constraint is tighter.

Key words. constrained shortest paths, Eikonal equations, optimal trajectories, network opti-
mization, global optimization
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1. Introduction. Path-planning problems in networks have been widely stud-
ied, with numerous applications in diverse fields such as telecommunications routing
(see, for example, [10]) and airline scheduling (see, for example, [1]). Continuous
path-planning problems also arise in varied contexts, such as robotics [14], highway
construction [9, 4], and military path planning [8, 12, 19, 18, 2, 21]. Our interest was
motivated by the problem of planning a path through a naval minefield, which led
us to formulate a path-planning problem in 2D Euclidean space, having the following
form.

Let F : R
2 �→ [0,∞) be a nonnegative, Hölder continuous function defined on a

compact, convex domain Ω ⊂ R
2. We refer to F as the cost function. In a military

application F may, for example, represent the risk distribution in a spatial domain
of detecting an aircraft by radar, or of a ship detonating a mine in a naval mine-
field. Such applications are likely to yield functions F that are nonconvex, and indeed
multimodal (see, for example, [19, 2, 21]). Note that the class of Hölder continu-
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NETWORK METHODS FOR LENGTH CONSTRAINED PATHS 55

ous functions exclude functions that have discontinuities or singularities. However,
many cost functions used in the literature satisfy the Hölder condition, for example,
probability of detection for submarines used by Caccetta et al. [2] and the cost func-
tions relating to weather disruptions and the reliability of the weather forecast used
by Mitchell and Sastry [16]. The total cost for a path is obtained by integrating F
along that path. While minimizing the total cost, we also wish to limit the Euclidean
length of our path: This can be used to model a practical time or fuel constraint. The
Continuous Length-Constrained Minimum Cost Path Problem (C-LCMCPP) can be
stated as follows: Find a piecewise differentiable curve in Ω between a given start
point a and end point b that minimizes the line integral of F subject to the constraint
that the Euclidean length of the curve is less than or equal a prescribed value L̄.

To be more precise, let C([0, 1], Ω) denote all piecewise differentiable curves pa-
rameterized by s ∈ [0, 1] such that for any p ∈ C([0, 1], Ω) we have p(s) ∈ Ω for all
s ∈ [0, 1]. Define

Γ = {p ∈ C([0, 1], Ω) : p(0) = a, p(1) = b}.

Then the C-LCMCPP can be stated mathematically as:

min
p∈Γ

J [p] =
∫ 1

0

F (p(s))||p′(s)||ds

s.t. Eu[p] =
∫ 1

0

||p′(s)||ds ≤ L̄,(1.1)

where ||.|| denotes the Euclidean norm. The piecewise differentiability of the paths
in Γ make the path integrals in (1.1) well defined. An instance of the C-LCMCPP
takes the form (Ω, F, L̄, a, b). We are interested in the general case, with no further
assumptions on F .

The C-LCMCPP could be approached directly as a continuous problem, but has
more commonly been tackled via network discretization. We discuss the former ap-
proach first. The two principal continuous approaches that are applicable are (i) vari-
ational techniques, such as solution of the Euler–Lagrange equation, or (ii) solution
of the Hamilton–Jacobi–Bellman equation. The former are discussed, for example,
by Zabarankin et al. [21] and Caccetta et al. [2]. However, variational techniques
can only ensure locally optimal solutions (see, for example, introductory remarks in
Tsitsiklis [20], and references therein). Globally optimal solutions can, in principle, be
obtained via the Hamilton–Jacobi–Bellman (HJB) equation (see [20] for an excellent
exposition). These have been extensively explored in the case without the Euclidean
length constraint, which we refer to as the C-MCPP. In this case, the problem is
equivalent to solving the Eikonal equation,

(1.2) ||∇τ || = F (x, y),

where τ , the value function, is the time of arrival of a disturbance propagating from
an initial set on which τ = 0, travelling at a given “slowness” (the inverse of the
speed of propagation), F , at each point. Numerical approaches to solution of this
problem all involve discretization, and there have been several schemes proposed for
which convergence to a global optimum has been proved; we believe Cristiani and
Falcone [5] provide the most recent instance, and give a comprehensive review of
previous approaches. The method in [5] is shown to converge under the relatively mild
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assumption that the speed function (the pointwise reciprocal of our F ) is Lipschitz
continuous.

For the problem of interest to us, the C-MCPP with the length constraint, we
believe no similar methods are known. Indeed, the only approach to constrained prob-
lems via the Eikonal equation that we are aware of is that of Mitchell and Sastry [16].
Their interest is finding paths for aircraft that minimize fuel consumption (i.e., path
length) subject to constraints on the probability of encountering bad weather with
a penalty relating to the reliability of the weather forecast in different regions. To
handle constraints, they recast them as objectives, incorporating them in the objec-
tive function with a multiplier; this returns the problem to one of solving an Eikonal
equation, where now the cost function, or speed, incorporates terms related to the
constraints. Their method samples from possible multipliers, and so samples from the
set of Pareto-optimal solutions for the multiobjective problem. As is noted in [16],
this will not necessarily yield an optimal solution to the constrained problem.

We now discuss approaches based on network discretization. In such approaches,
the spatial domain Ω is discretized, and represented by a set of points, including a
and b, which are used as vertices in a network. The arcs in the network restrict the
path to travel only between pairs of vertices connected by an arc, and the cost of each
arc is taken to be the integral of F along the straight line between the two endpoints
of the arc. The problem of finding a minimum cost path in the network from a to
b is now a standard network shortest path problem, which is easily solvable, with
techniques such as Dijkstra’s algorithm [6] or the A∗ algorithm [11], to give globally
optimal solutions. Problems with the additional Euclidean length constraint take the
form of a Weight-Constrained Shortest Path Problem (WCSPP) in a network, which
is also now very well solved for practical purposes, for example, using the recent
approaches of Dumitrescu and Boland [7], Carlyle and Wood [3], or Muhandiramge
and Boland [17]. In either case, solving the network shortest path problem provides a
feasible solution to the continuous problem, and so yields an upper bound on its value.

For further detail of how continuous problems, particularly those arising from path
planning in a threat environment, can be modeled as network path problems, we refer
the reader to the paper of Zabarankin et al. [21], which gives an excellent exposition.
Zabarankin et al. [21] also derive analytic solutions for the case of a single point
threat, and so can demonstrate computationally that in such cases the upper bounds
generated from network discretizations are very close to the exact global optimum.
Most work along these lines rests with constructing the network discretization and
solving the corresponding network path problem: The focus is on modeling other
practical complications, such as curvature constraints. For example, Piatko et al. [19,
18] discretize with points on a square grid, with arcs from each point to either its
four, or eight, nearest neighbors. Similar networks were used by Fahlen [8], Caccetta
et al. [2], and Zabarankin et al. [21], although [8] and [21] both describe using sixteen
neighbors in the 2D case, and [21] further considers the 3D case. Curvature (turning
angle) constraints are considered in [8, 21], while [2] permits variable speeds for path
traversal, selected from a finite set of possible speeds.

By contrast, Kim and Hespanha [12], in work on an anisotropic form of the
problem (cost depends on direction) without the length constraint, focus on finding
network constructions that provide better approximations. They develop a novel net-
work construction method that they call “honeycomb” sampling. This method selects
points at random from the spatial domain, according to a probability distribution that
ensures either the points are close together, or that a term related to gradients of the
cost function is small. The Voronoi diagram for these points is then constructed, and
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nodes on the network are sampled from the edges of the Voronoi diagram. The hon-
eycomb sampling is compared computationally with (i) a network with nodes selected
uniformly at random from the spatial domain, and (ii) a network with nodes selected
at random according to a probability distribution based on cost function gradients.
Kim and Hespanha [12] report average reductions in the cost of the network paths
found using honeycomb sampling of around 7.5% over the uniform sampling networks
and around 11% over the gradient-based sampling method. Unfortunately, [12] does
not say how their network nodes were connected (they don’t define the arcs), so it is
difficult to assess the relative computational effort for these approaches.

Network discretizations have also been explored by authors in contexts other than
that of the C-LCMCPP or C-MCPP. Kimmel and Kiryati [13] used a grid network
and local refinement procedure to find the minimum length path on a underlying
3D surface given a digitization of the surface. First, the surface was represented by a
graph with a node for each surface voxel and an edge from each node to all the surface
voxel nodes up to one unit away in each direction (a total of 26 possible different
directions). Rather than weight these links by their length, they weighted them
using a path length estimator which gives an unbiased estimate of the path length
on the actual underlying surface. They then found the shortest path in this network
using a standard network shortest path algorithm. Since grid networks suffer from
discretization bias, [13] also used a curve shortening flow method [15] to shorten the
path to a local optimum. Caccetta et al. [2] similarly combine an initial discretization
step with a subsequent local optimization step based on variational techniques. They
use a standard grid network, solve the corresponding network problem approximately,
but then take the resulting path as an initial point for an optimal control solver, to
derive a locally optimal solution.

As far as we are aware, the only work that considers the issue of how far the
solution to the network discretization problem is from that of the original continuous
problem, or considers the possibility of convergence to the globally optimal solution as
the network is refined, is that of Kim and Hespanha [12]. As mentioned earlier, they
tackle an anisotropic problem, and do not apply a length constraint. For this case,
they provide a lower bound formula. Unfortunately, their formula involves a set of
points in the spatial domain that they prove to exist, but which they don’t explicitly
show how to construct. They simply require the set to be “sufficiently dense”. Thus
they cannot readily use their formula to compute a lower bound from a path found in
a given network. Furthermore, although their network construction is motivated by
the theory they provide, it is not explicitly proved to converge to the globally optimal
solution. Indeed, since their construction relies on randomized sampling, such a proof
would have to include some kind of “almost surely” condition.

In this paper, we give a general scheme for convergence of network discretizations.
With this scheme, we show that if we solve the corresponding WCSPP with path
lengths constrained to L̄(1 + γ), where γ depends on the network construction, then
we can compute a lower bound on the global optimum of the C-LCMCPP. We prove
furthermore that this bound converges to the global optimum as the network is refined
in a way described later. We also prove that the solution to the WCSPP with path
length constrained to L̄ (an upper bound on the global optimum of the C-LCMCPP)
also converges to the global optimum as the network is refined.

This is, of course, of theoretical interest, but from a practical point of view,
we still need to construct good network discretizations. An advantage of network
solution methods that make them useful for nonconvex problems is they find global
optima within the network. However how accurately the network solution reflects
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the continuous solution depends greatly on the structure of the network used. One
point that is not hard to see is that the standard grid networks, with arcs only
connecting points to a handful of their nearest neighbors, cannot, in general, converge
to globally optimal solutions of the C-LCMCPP. With such networks, the set of
gradients available to the network path is simply not rich enough to ensure it can
well approximate the optimal continuous path; grid networks suffer from significant
discretization bias. A complete network on a set of grid points would suffice, but a
complete network on a fine grid has an enormous number of arcs, and even efficient
shortest path algorithms are unlikely to be practical if we attempt to use complete
networks. (We note that in the unconstrained case of the C-MCPP, the method of
Cristiani and Falcone [5] implicitly considers a much larger set of tangent directions
by updating node values using the multiple neighboring node values simultaneously.
This allows them to prove convergence.)

Thus the challenge is to structure a network that is “just right”. It needs to
be rich enough to well approximate any optimal path, but not so dense as to make
solution of the network problems impractical. By structuring our network carefully,
we can overcome the discretization effects with a purely network method, avoiding the
need for a local refinement procedure. We can also guarantee that our solution will
converge to the true optimum as we refine our network. We have met this challenge
with what we call a “cellular” network construction, based on triangular tessellation
of the spatial domain, and hexagonal cells. This network is sparse, while still meeting
the conditions for convergence.

We give the results of numerical computations, showing the effects of refining the
network discretization on the lower and upper bounds computed. We also compare
the upper bounds found with those found using the standard grid approach, using
computational effort. This shows that the cellular network gives better solutions,
particularly when the length constraint is tighter.

Thus our contribution in this work is what we believe is the first approach to
a constrained continuous minimum cost path problem that is proved to converge
to the globally optimal solution, under mild assumptions on the cost function. We
also provide computable lower bounds, and a network construction that is sparse,
while still providing better approximations to the continuous solution than standard
approaches.

The paper is structured as follows: First we formalize the concept of using a
network to approximate the C-LCMCPP; next we outline the properties of network
that produce a convergent solution; and lastly we create a method of constructing
networks with these properties and give numerical results.

2. Network formulation. To solve the C-LCMCPP using a network formula-
tion we create a network G = (V, A) consisting of nodes and directed edges in Ω such
that nodes are located at the start point a and end point b and at least one network
path exists that connects a and b. A network path p from node v0 to node vm in G
is a sequence of arcs p = ((v0, v1), (v1, v2), . . . , (vm−1, vm)) such that (vk−1, vk) ∈ A
for all k ∈ {1, . . . , m}. For convenience, we will assume that the graph has a unique
directed edge between any ordered pair of nodes so p can be equivalently written
p = (v0, v1, . . . , vm−1, vm).

As the nodes in our network are also points in the Euclidean plane, we treat them
both as abstract network nodes, e.g., v ∈ V and also directly as coordinate in 2-space,
e.g., ||vi − vi+1|| and v ∈ Ω. The context in which a node is mentioned indicates in
what capacity it is to be treated.

D
ow

nl
oa

de
d 

04
/1

8/
13

 to
 1

34
.1

48
.2

21
.1

63
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NETWORK METHODS FOR LENGTH CONSTRAINED PATHS 59

We assign each edge a cost which is the line integral of F along the edge and a
weight which is the Euclidean length of the edge. We then solve the corresponding
weight constrained shortest path problem (WCSPP): Finding a network path from a
to b that minimizes the sum of the costs of the edges in the path while keeping the
total length of the path less than or equal to a given weight limit.

The quality of our network approximation depends a great deal on the structure of
the network. In particular, we would like the difference between the optimal objective
function value for the C-LCMCPP and the corresponding WCSPP to be as small as
possible. We would also like this difference to shrink to zero as we refine our network.
We formalize the network design into the concept of a network construction as follows.

Definition 2.1. A network construction G is a method that, given an instance I
of the C-LCMCPP and a finite vector of real parameters P from a parameter domain
S, will produce a finite directed network G(I, P ) which includes a and b as nodes and
in which a network path from a to b exists.

The important point is that a network construction can take many different vec-
tors of parameter values and thus produce many related networks for a given instance,
e.g., many different grid spacings for a grid network. We would like to have a network
construction that, given the right series of parameters, produces a series of networks
whose WCSPP optimal objective function values converge to the objective function
value of the C-LCMCPP. This is the focus of the next definition.

Definition 2.2. A convergent network construction G is a network construction
for which for any instance I of the C-LCMCPP we can find a sequence of parameter
sets (P1, P2, . . . ) with Pk ∈ S for k ∈ Z

+ such that the difference between the objective
function value of the solution to I and the approximate WCSPP solution using the
network G(I, Pn) goes to zero as n goes to infinity. The WCSPPs may use a different
weight limit to the C-LCMCPP.

In the following section, we formulate a convergent network construction and in
the process obtain a calculable lower bound on the cost of the optimal solution of the
C-LCMCPP.

3. (δ, ε, κ)-approximation networks. In this section, we outline the proper-
ties of a network that allow us to relate the solution of the WCSPP over the network
to the corresponding C-LCMCPP. Such properties are given by Definition 3.1, and
we call a network that satisfies these properties a (δ, ε, κ)-approximation network. We
will give an example later of how such a network is constructed, but for now we con-
centrate on proving convergence using the abstract properties of the network without
the distraction of outlining the full network construction method.

The motivation behind the definition is that to approximate a continuous path
integral using a network path, we would ideally like the end points of the edges to be
on the path, as standard for the Riemann sum definition of a path integral. In our
case, however, we want to be able to approximate the integral for any reasonable path
in our space using a finite network; thus we cannot guarantee that the approximating
points will be directly on the path. Therefore, the best we can do is guarantee that
the approximating points are within some distance of the path.

To make this guarantee, for any path p ∈ Γ, we have a sequence pG = (v0, . . . , vN ),
with vk ∈ V for k ∈ {0, 1, . . . , N}, which forms the network approximation to the
path. To relate the network path to the continuous path it approximates, we have
the corresponding sequence (p(s0), p(s1), p(s2), . . . , p(sN )) of points on the path p, in
which each point, p(sk), is at most ε away from the nearest corresponding node, vk,
for each k = 0, . . . , N . The distance between these points on the path is bounded
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below by δ and above by κδ. The distance κδ corresponds to the maximum on the
distance between points in a Riemann sum.

Definition 3.1. A (δ, ε, κ)-approximation network G = (V, A) with δ > 0, ε >
0, κ > 1 ∈ R for an instance I = (Ω, F, L̄, a, b) of the C-LCMCPP has the following
properties:

1. the set V contains a and b;
2. for each node v ∈ V \ {b} there is a closed, connected region Rv ⊆ Ω such

that each Rv can be enclosed by a circle of radius κδ; and
3. for each p ∈ Γ with Eu[p] ≤ L̄ there is an ordered sequence of points on

the path p given by (a = p(s0), p(s1), . . . , p(sN−1), p(sN ) = b) with 0 = s0 <
s1 < . . . < sN−1 < sN = 1, and a path (a = v0, v1, . . . , vN−1, vN = b)
in the network G, i.e., a sequence with vk ∈ V and (vk−1, vk) ∈ A for all
k ∈ {1, . . . , N}, such that:
(a) ||p(sk) − p(sk−1)|| ≥ δ, for all k ∈ {1, . . . , N},
(b) ||vk − p(sk)|| ≤ ε, for all k ∈ {0, . . . , N}, and
(c) p(s) ∈ Rvk

for all s ∈ [sk, sk+1] and αvk + (1 − α)vk+1 ∈ Rvk
for all

α ∈ [0, 1], for each k ∈ {0, . . . , N − 1}.
3.1. Length relationship. Consider a (δ, ε, κ)-approximation network for an

instance I of the C-LCMCPP. For an optimal solution p∗ of I, we have the sequence
of points (p∗(s0), . . . , p∗(sN )) on the path guaranteed by Definition 3.1 and clearly

(3.1) Eu[p∗] ≥
N∑

k=1

||p∗(sk) − p∗(sk−1)||.

We would now like to find, for any path p ∈ Γ, the relationship between the
Euclidean length of the piecewise linear path formed by (p(s0), p(s1), p(s2), . . . , p(sN)),
and that formed by the corresponding network path (v0, v1, v2, . . . , vN ) satisfying the
conditions of Definition 3.1.

Lemma 3.2. Any (δ, ε, κ)-approximation network G = (V, A) for an instance
I = (Ω, F, L̄, a, b) of the C-LCMCPP will have the property that for any path p ∈ Γ,
there is a sequence of points on the path (p(s0), p(s1), p(s2), . . . , p(sN )) and a sequence
of nodes (v0, v1, v2, . . . , vN ) with 0 = s0 < s1 < . . . < sN−1 < sN = 1 and vk ∈ V
for all k ∈ {0, . . . , N}, such that ||vk − vk−1|| ≤ ||p(sk) − p(sk−1)||(1 + γ) for all
k ∈ {1, . . . , N} and γ ∈ ΦG where

(3.2) ΦG =
[
c1

ε

δ
+ c2

ε2

δ2
,∞

)

for some c1, c2 ∈ [0, 2] independent of p.
Proof. Let G = (V, A) be a (δ, ε, κ)-approximation network for an instance I

of the C-LCMCPP. For any path p ∈ Γ, let (p(s0), p(s1) , p(s2), . . . , p(sN )) and
(v0, v1, v2, . . . , vN ) be the sequences guaranteed to exist by Definition 3.1. Let Lk =
||vk − vk−1||, δk = ||p(sk) − p(sk−1)|| for k ∈ {1, . . . , N}, and εk = ||p(sk) − vk|| for
k ∈ {0, . . . , N}.

For k ∈ {1, . . . , N}, if p(sk−1) �= vk−1, let αk be the angle defined by p(sk),
p(sk−1) and vk−1 measured anticlockwise from the segment {p(sk−1), p(sk)}, and if
p(sk) �= vk, let βk be the angle defined by p(sk−1), p(sk) and vk also measured
anticlockwise from the segment {p(sk−1), p(sk)}. If p(sk−1) = vk−1, i.e., εk−1 = 0, set
αk to 0 and similarly if p(sk) = vk, i.e., εk = 0, set βk to 0.
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v1

v3

v0

α 2

v2

β
2

L 2

δ 2δ

=a =

ε

p(s  )
ε1

ε2

== p(s  )b v4 4

p(s  )3

p(s  )2

p(s  )0

1

p

Fig. 3.1. Representation of a path p and its network approximation. Parts of the diagram
applicable to Lemma 3.2 for k = 2 are labelled. The small circles have radius ε and the large circles
have radius δ.

Then from Figure 3.1, we can deduce, by decomposing the segments {p(sk−1),
vk−1} and {p(sk), vk} into components parallel and perpendicular to {p(sk−1), p(sk)}
and using Pythagoras, that

L2
k = (δk − εk−1 cos(αk) − εk cos(βk))2 + (εk−1 sin(αk) + εk sin(βk))2.

To get an upper bound on how much longer Lk could be compared to δk, we take
the absolute value of the component contributions. We also note that 0 ≤ εk−1, εk ≤ ε
due to Condition 3(b) of Definition 3.1. Using this, we then get

L2
k ≤ (δk + ε| cos(αk)| + ε| cos(βk)|)2 + (ε| sin(αk)| + ε| sin(βk)|)2.

The effect of the absolute value signs on the sine and cosine function can be
replicated if we make the following transformation which keeps the angles in the
range [0, π

2 ]:

αk =

⎧⎪⎪⎨
⎪⎪⎩

αk αk ∈ [0, π
2 ],

π − αk αk ∈ [π
2 , π],

αk − π αk ∈ [π, 3π
2 ],

2π − αk αk ∈ [3π
2 , 2π].

Using the same transformation function for βk, we then expand and simplify using
trigonometric identities and then estimate Lk as follows:

L2
k ≤ δ2

k + 2ε2 + 2δkε(cos(αk) + cos(βk)) + 2ε2 cos(αk − βk)

=⇒ Lk ≤
√

δ2
k + 2ε2 + 2δkε(cos(αk) + cos(βk)) + 2ε2 cos(αk − βk)

= δk

√
1 + 2

(
ε

δk
(cos(αk) + cos(βk)) +

ε2

δ2
k

(1 + cos(αk − βk))
)

≤ δk

√
1 + 2

(
ε

δ
(cos(αk) + cos(βk)) +

ε2

δ2
(1 + cos(αk − βk))

)

≤ δk

(
1 +

ε

δ
(cos(αk) + cos(βk)) +

ε2

δ2
(1 + cos(αk − βk))

)

= δk

(
1 + ck

1

ε

δ
+ ck

2

ε2

δ2

)
,
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62 RANGA MUHANDIRAMGE, NATASHIA BOLAND, AND SONG WANG

where we have used δk ≥ δ from Condition 3(a) of Definition 3.1 and the inequality√
1 + x ≤ 1 + x

2 , for any x ≥ 0.
In the above, ck

1 = cos(αk)+cos(βk) and ck
2 = 1+cos(αk−βk). As αk, βk ∈ [0, π

2 ],
this implies both cos(αk), cos(βk) ∈ [0, 1]. Also (αk −βk) ∈ [−π

2 , π
2 ] so cos(αk −βk) ∈

[0, 1]. Thus it is clear that ck
1 , ck

2 ∈ [0, 2]. We define c1(p) as maxk∈{1,...,N} ck
1 and

c2(p) as maxk∈{1,...,N} ck
2 and note that c1(p), c2(p) ∈ [0, 2].

Now, let c1 and c2 be the supremum of c1(p) and c2(p), respectively, over all paths
p ∈ Γ. We see that c1, c2 ∈ [0, 2]. Thus

Lk ≤ δk

(
1 + c1

ε

δ
+ c2

ε2

δ2

)
Lk ≤ δk(1 + γ),

where γ ∈ [c1
ε
δ + c2

ε2

δ2 ,∞).
If we return to our original definition of Lk and δk we get Lk = ||vk − vk−1|| ≤

||p(sk)−p(sk−1)||(1+γ) = δk(1+γ) for all k ∈ {1, . . . , N}, where γ ∈ [c1
ε
δ +c2

ε2

δ2 ,∞) =
ΦG for some c1, c2 ∈ [0, 2] independent of p.

Corollary 3.3. Let p∗ be an optimal path of an instance I = (Ω, F, L̄, a, b) of
the C-LCMCPP and G be a (δ, ε, κ)-approximation network for I. Then the network
approximation p∗G = (v0, v1, v2, . . . , vN ) to p∗, guaranteed to exist by Definition 3.1,
satisfies Eu[p∗G] ≤ L̄(1 + γ) for γ ∈ ΦG where ΦG is defined in (3.2).

Proof. Let (s0, . . . , sN ) be defined for p∗ as per Definition 3.1. Then

Eu[p∗G] =
N∑

k=1

||vk − vk−1||

≤
N∑

k=1

||p∗(sk) − p∗(sk−1)||(1 + γ) by Lemma 3.2

≤ Eu[p∗](1 + γ) by (3.1).

Now as p∗ is feasible for the instance I of the C-LCMCPP, we have Eu[p∗] ≤ L̄ so

Eu[p∗G] ≤ L̄(1 + γ).

Corollary 3.3 is important because it tells us that by relaxing the weight constraint
in our network by the factor 1 + γ, the network path p∗G that approximates the
continuous optimal solution will be a feasible path in our WCSPP approximation.

3.2. Lower bounds. Let G be a (δ, ε, κ)-approximation network for an instance
I = (Ω, F, L̄, a, b) of the C-LCMCPP. Then for p∗ an optimal solution to I, the
sequences with properties given by Definition 3.1, that is (p∗(s0), p∗(s1), . . . , p∗(sN ))
with 0 = s0 < s1 < . . . < sN = 1 and the network approximation p∗G = (v0, v1, . . . , vN )
to p∗, are guaranteed to exist. Using the sequence (p∗(s0), p∗(s1), . . . , p∗(sN )) to put
a lower bound on the optimal solution to I we get

(3.3) J [p∗] ≥
N∑

k=1

||p∗(sk) − p∗(sk−1)||M↓(vk−1),

where M↓(vk−1) is the minimum value of F on the region Rvk−1 . Here we have used
Condition 3(c) from Definition 3.1 that the path segment between p∗k−1 and p∗k is
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entirely in the region Rvk−1 . Remember κ > 1 and for each v ∈ V , Rv is a closed
connected region around v that is contained in a circle of radius κδ.

Using the sequence (v0, v1, . . . , vN ) to put an upper bound on the cost of the
network approximation to p∗ we get

(3.4) J [p∗G] ≤
N∑

k=1

||vk − vk−1||M↑(vk−1),

where M↑(vk−1) is the maximum value of F on the region Rvk−1 . Here we again use
Condition 3(c) from Definition 3.1 to guarantee that the arc between vk−1 and vk is
entirely in the region Rvk−1 .

Using inequalities (3.3) and (3.4) we get

(3.5)

J [p∗] − J [p∗G]
1 + γ

≥
N∑

k=1

||p∗(sk) − p∗(sk−1)||M↓(vk−1) −
N∑

k=1

||vk − vk−1||
1 + γ

M↑(vk−1)

≥
N∑

k=1

||p∗(sk) − p∗(sk−1)||M↓(vk−1) −
N∑

k=1

||p∗(sk) − p∗(sk−1)||M↑(vk−1)

≥
N∑

k=1

||p∗(sk) − p∗(sk−1)||(M↓(vk−1) − M↑(vk−1)),

where γ ∈ ΦG. At this stage we make the following definition.
Definition 3.4. ΔG = maxv∈V \{b}(M↑(v) − M↓(v)) or equivalently using the

definition of M↑(v) and M↓(v), ΔG = maxv∈V \{b}(maxx∈Rv F (x) − miny∈Rv F (y)).
The parameter ΔG represents the maximum over all v ∈ V of the variation of

the underlying F function over the regions Rv. Using this definition we proceed as
follows:

(3.6)

J [p∗] − J [p∗G]
1 + γ

≥ −
N∑

k=1

||p∗(sk) − p∗(sk−1)||ΔG using Definition 3.4

≥ −Eu[p∗]ΔG by (3.1)
≥ −L̄ΔG as Eu[p∗] ≤ L̄.

Rearranging (3.6) gives us the relation

(3.7) J [p∗] ≥ J [p∗G]
1 + γ

− L̄ΔG.

If we consider the WCSPP for network G with a relaxed weight constraint, i.e.,
finding the network path in G between nodes a and b with length less than or equal
to L̄(1 + γ), we know that any network approximation p∗G to the optimal path p∗

of instance I is feasible for the relaxed WCSPP by Corollary 3.3. Thus if q∗G is an
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64 RANGA MUHANDIRAMGE, NATASHIA BOLAND, AND SONG WANG

optimal solution to the relaxed WCSPP, then we know J [q∗G] ≤ J [p∗G] by the definition
of the optimality of q∗G. Then

(3.8) J [p∗] ≥ J [q∗G]
1 + γ

− L̄ΔG.

Letting J∗(L̄) = J [p∗] be the optimal objective function value of an instance I
of the C-LCMCPP and J∗

G(L̄(1 + γ)) = J [q∗G] the optimal objective function value of
the relaxed WCSPP using the network G, we get

(3.9) J∗(L̄) ≥ J∗
G(L̄(1 + γ))

1 + γ
− L̄ΔG.

Using this relation, we can calculate concrete lower bounds on the solution of the
C-LCMCPP as we will demonstrate in section 5. Note that if we cannot find the
optimal objective function value of the relaxed WCSPP, any lower bound on optimal
value can replace J∗

G(L̄(1 + γ)) in the formula and produce a valid, if worse, lower
bound on J∗(L̄).

3.3. κ-regular network constructions and convergence. To create a con-
vergent network construction we define κ-regular network constructions in Definition
3.5. When given the right series of parameters a κ-regular network construction pro-
duces a series of (δ, ε, κ)-approximation networks for which δ and ε

δ approach zero.
This property will help us show that κ-regular network constructions are convergent
network constructions.

Definition 3.5. A κ-regular network construction is a network construction G
with parameter domain S for which for any instance I of the C-LCMCPP there exists:

1. A sequence of parameter vectors (P1, P2, . . . ), Pk ∈ S, ∀k ∈ Z
+,

2. A sequence (δ1, δ2, . . . ) with δk > 0, ∀k ∈ Z
+ such that limk→∞ δk = 0 and,

3. A sequence (ε1, ε2, . . . ) with εk > 0, ∀k ∈ Z
+ such that limk→∞ εk

δk
= 0,

such that G(I, Pk) is a (δk, εk, κ)-approximation for all k ∈ Z
+.

Before we prove convergence, we need to introduce the following theorem.
Theorem 3.6. Let J∗(L) with L ∈ [Lmin,∞) be the optimal objective function

value of instance I = (Ω, F, L, a, b) of the C-LCMCPP, where Lmin = ||b − a|| is
the minimum distance between a and b. Then J∗(L) is monotonically decreasing and
continuous for L ∈ [Lmin,∞) if F is Hölder continuous and Ω is convex.

Proof. To show J∗(L) is monotonically decreasing, we note that if p∗(L1) is an
optimal solution to the C-LCMCPP for weight limit L1, then for L2 > L1, p∗(L1)
is a feasible solution to the C-LCMCPP with weight limit L2. Thus if L1 < L2,
J [p∗(L1)] = J∗(L1) ≥ J∗(L2) = J [p∗(L2)] so J∗(L) must be monotonically decreas-
ing. Due to space limitations, the proof that J∗(L) is continuous is omitted.

Note, however, that J∗(L) may not be continuous if we allow obstacles as these
would result in either a discontinuity in F or nonconvexity of Ω. In fact, it is easy
to construct an example with obstacles in which the function J∗(L) is discontinuous.
In this paper we do not consider obstacles; recall our initial assumption that F is
continuous and Ω is convex.

Theorem 3.7. A κ-regular network construction is a convergent network con-
struction.

Proof. Consider a κ-regular network construction G. For any instance I =
(Ω, F, L̄, a, b), we know by Definition 3.5 that there exists a sequence of parameter
vectors, (P1, P2, . . . ), such that G(n) = (V (n), A(n)) = G(I, Pn) is a (δ(n), ε(n), κ)-
approximation network and limn→∞ δ(n) = 0 with limn→∞

ε(n)
δ(n) = 0.
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We see by rearranging (3.9) that

(3.10) J∗
G(n)(L̄(1 + γ(n))) ≤ (J∗(L̄) + L̄ΔG(n))(1 + γ(n)),

where γ(n) = 2 ε(n)
δ(n) + 2 ε(n)2

δ(n)2 ∈ ΦG(n).
To show that the right-hand side of (3.10) converges to J∗(L̄), we need to

show that we can refine the network in such a way that limn→∞ ΔG(n) = 0 and
limn→∞ γ(n) = 0.

Letting Rv(n) be the region around the node v ∈ V (n) \ {b} guaranteed to exist
by Definition 3.1, we see clearly from Definition 3.4,

ΔG(n) = max
v∈V (n)\{b}

( max
x∈Rv(n)

F (x) − min
y∈Rv(n)

F (y)),

that zero is a lower bound on ΔG(n). We know from Definition 3.1 that each region
Rv(n) is contained in a disk of radius κδ(n). Thus the maximum distance between
points in the set Rv(n) is 2κδ(n). Now as F is Hölder continuous, for any points x
and y in Ω we have |F (x) − F (y)| ≤ K||x − y||σ for some positive constant K and
0 < σ ≤ 1. Hence we have

lim
n→∞ΔG(n) = lim

n→∞ max
v∈V (n)\{b}

( max
x∈Rv(n)

F (x) − min
y∈Rv(n)

F (y))

≤ lim
n→∞ max

v∈V (n)\{b}
K|| argmax

x∈Rv(n)

F (x) − argmin
y∈Rv(n)

F (y)||σ by Hölder condition

≤ lim
n→∞K(2κδ(n))σ

≤ 0 as lim
n→∞ δ(n) = 0.

Thus limn→∞ ΔG(n) = 0. Now

lim
n→∞ γ(n) = lim

n→∞

(
c1

ε(n)
δ(n)

+ c2
ε(n)2

δ(n)2

)
= 0 as lim

n→∞
ε(n)
δ(n)

= 0.

So finally, using limn→∞ ΔG(n) = 0 and limn→∞ γ(n) = 0, we get

lim
n→∞ J∗

G(n)(L̄(1 + γ(n))) ≤ lim
n→∞(J∗(L̄) + L̄ΔG(n))(1 + γ(n))

lim
n→∞ J∗

G(n)(L̄(1 + γ(n))) ≤ J∗(L̄).

To show convergence we need a corresponding lower bound on limn→∞J∗
G(n)(L̄(1+

γ(n)). We know J∗(L) is continuous on L ∈ [||b − a||,∞) by Theorem 3.6. A contin-
uous map of a convergent sequence is convergent, and thus

L̄ = lim
n→∞ L̄(1 + γ(n)) as lim

n→∞ γ(n) = 0

J∗(L̄) = lim
n→∞J∗(L̄(1 + γ(n))) as J∗(L) is continuous

J∗(L̄) ≤ lim
n→∞J∗

G(n)(L̄(1 + γ(n))),

where we have used J∗
G(n)(L̄(1+γ(n))) ≥ J∗(L̄(1+γ(n))) by the optimality condition

of the continuous optimal solution. Thus

J∗(L̄) ≤ lim
n→∞J∗

G(n)(L̄(1 + γ(n)) ≤ J∗(L̄).
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So

lim
n→∞J∗

G(n)(L̄(1 + γ(n)) = J∗(L̄).

This shows that if we choose the sequence of parameters (P1, P2, . . . ) guaranteed
to exist by Condition 1 of Definition 3.5, then the optimal objective function values
of the WCSPP’s for the networks G(n) = G(I, Pn) will converge to the objective
function value of the C-LCMCPP as n → ∞. Thus we have shown a κ-regular
network construction is convergent.

Theorem 3.7 shows us that the WCSPP solutions for a κ-regular network construc-
tion using the relaxed weight constraint converge to the solution of the C-LCMCPP.
However, we can also show that the solutions to the WCSPP using the same weight
constraint as the C-LCMCPP also converge.

Theorem 3.8. Given an instance I = (Ω, F, L̄, a, b) of the C-LCMCPP with
L̄ > ||a − b|| and a κ-regular network construction G, the solutions to the WCSPP
using the network G(I, Pn) and the weight limit L̄ will converge to the solution of I
for some sequence of parameter sets (P1, P2, . . . ).

Proof. Choose the parameter set (P1, P2, . . . ) guaranteed to exist by Definition 3.5
such that G(n) = (V (n), A(n)) = G(I, Pn) is a (δ(n), ε(n), κ)-approximation network
with limn→∞ δ(n) = 0 and limn→∞

ε(n)
δ(n) = 0. Let γ(n) = 2 ε(n)

δ(n) + 2 ε(n)2

δ(n)2 ∈ ΦG(n).
Choose a sequence Ln and integer N such that L̄ = Ln(1+γ(n)) and Ln > ||a−b||

for all n ∈ {N, N + 1, . . . }. Note that limn→∞ Ln = L̄ and Ln < L̄ for all n ∈ Z
+.

As G(n) is a (δ(n), ε(n), κ)-approximation network to problem instance (Ω, F, L̄, a, b),
then G(n) is also a (δ(n), ε(n), κ)-approximation network for the problem instance
(Ω, F, Ln, a, b); this is readily seen from Definition 3.1 noting Ln < L̄. Hence, applying
(3.9) for n ∈ {N, N + 1, . . . }, we get

J∗(Ln) ≥
J∗

G(n)(Ln(1 + γ(n)))

1 + γ(n)
− LnΔG(n)

≥
J∗

G(n)(L̄)

1 + γ(n)
− LnΔG(n) as Ln(1 + γ(n)) = L̄.

Rearranging, we get

J∗
G(n)(L̄) ≤ (J∗(Ln) + LnΔG(n))(1 + γ(n)).

Taking limits and using reasoning similar to that used in the proof of Theorem 3.7,
we obtain

lim
n→∞J∗

G(n)(L̄) ≤ (J∗(Ln) + LnΔG(n))(1 + γ(n)),(3.11)

which implies

lim
n→∞J∗

G(n)(L̄) ≤ J∗(L̄) as J∗(.) continuous.(3.12)

Also, the optimization problem that defines J∗
G(n) has a domain that is a subset

of the domain of the optimization problem that defines J∗ so J∗(L̄) ≤ J∗
G(n)(L̄) for

all n ∈ Z
+. Thus limn→∞ J∗

G(n)(L̄) ≥ J∗(L̄). So clearly limn→∞ J∗
G(n)(L̄) = J∗(L̄).

This completes the proof.
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By solving the WCSPP corresponding to a given instance of the C-LCMCPP
with the original rather than relaxed weight constraint we obtain feasible solutions
to the optimization problem and an upper bound. Theorem 3.8 tells us that the
upper bounds will converge to the true continuous optimal solution as we refine our
framework.

Note that the convergence proof does not work if the length constraint is equal to
‖a− b‖. In this case, there is only one possible path, being the straight line from a to
b. However, in our successive network approximations to this problem this path may
not appear in our network as all paths from a to b in our network may be slightly
longer that ‖b−a‖. The WCSPP would then have no feasible solution for L̄ = ‖b−a‖
and thus J∗

G(‖a− b‖) would be undefined. In this case, the successive approximations
could not be said to converge.

4. A specific κ-regular network construction technique. In this section
we create a κ-regular network construction G that satisfies Definition 3.5. We will do
this using one network to create a scaffolding with cells of size of order δ and then
placing a second network used to solve the WCSPP on this scaffolding. The nodes of
the second network are placed on the boundaries of the cells with the nodes spaced
at most 2ε apart. For reasons that will become clear later, we will call this a cellular
network construction.

Our parameter space will be the set S = {(i, j, M) ∈ Z
⊕×Z

⊕×Z
+ : (i, j) �= (0, 0)}

where Z
⊕ is the set of nonnegative integers. We will first show that each network

constructed is a (δ, ε, κ)-approximation network where δ =
√

3
2

‖b−a‖√
i2+j2+ij

, ε = 1√
3M

δ
and κ = 4√

3
.

For an instance I = (Ω, F, L̄, a, b) of the C-LCMCPP, we construct our network
by first creating a tessellation of equilateral triangles covering all of R

2 such that a
and b (the start and end points) are located at triangle corners. The triangle size
and orientation is specified by the parameters i and j. Specifically, we find the side
length lij and unit vectors d1 and d2 such that d2 points π

3 radians anticlockwise to
the direction of d1 and a + ilijd1 + jlijd2 = b. Using the cosine rule and referring to
Figure 4.1(a) we see that

‖b − a‖2 = i2l2ij + j2l2ij − 2ijl2ij cos
(

2π

3

)
,

which we simplify and rearrange to give

lij =
‖b − a‖√

i2 + j2 + ij
.

We can then find d1 and d2 using the sine rule. We construct our tessellation to
align the vectors d1 and d2 with the side length of the triangles given by lij . Figure
4.1(b) shows the resulting tessellation for parameter vector (i, j) = (2, 2).

We define

δ =
√

3
2

lij =
√

3
2

‖b − a‖√
i2 + j2 + ij

.

This definition makes δ the perpendicular height of the equilateral triangles that form
our tessellation.

We will view this tessellation as a network which we call T (i, j) = (SN, SE). To
distinguish this network from the one over which the WCSPP is solved, we call the
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d1li,j

d2li,j

li,ji

o60
li,jj 

Ω

b

a

(a) Construction diagram for T (i, j).

δ

Ω

si

a

sj

b

(b) Adjacent node sets for supernodes si and
sj.

δ

Ω

a

b

se

sf

(c) Boundary supernode sets for superedges
se and sf .

δ

Ω

a

b

se

sf

(d) Boundary superedge sets for superedges
se and sf .

Fig. 4.1. These diagrams show the construction of and examples of the various definitions for
our scaffolding graph. The network was created using (i, j) = (2, 2). Knowing (i, j) and the position
of a and b, we can easily find the length lij and the vectors d1, d2. These are used to construct our
scaffolding graph (SNΩ, SEΩ). The supernode set SNΩ are the black dots shown and the superedge
set SEΩ are dotted lines shown on the diagram.

elements of SN supernodes and the elements of SE superedges. We place a supernode
at every triangle vertex to form the set SN = {a + mlijd1 + nlijd2 : m, n ∈ Z}. Then
the set of superedges are defined by SE = {se = {si, sj} : si, sj ∈ SN, ‖si−sj‖ = lij}.
Note that superedges are undirected.

Definition 4.1. We say the superedge se = {si, sj} contains a point x ∈ Ω if
there exists λ ∈ [0, 1] ⊂ R such that x = λsi + (1 − λ)sj.

Naturally, we will only be interested in the part of the tessellation that covers Ω.
Let the set of triangles in T (i, j) that cover Ω, i.e., all triangles that intersect with Ω,
be denoted by TriΩ = {� = {{si, sj}, {si, sk}, {sj, sk}} ⊂ SE : ∃se ∈ � and ∃x ∈ Ω
s.t. se contains x}. We define a new set of supernodes SNΩ = {sn ∈ SN : ∃� ∈ TriΩ
with se ∈ � s.t. sn ∈ se}. We define SEΩ = {{si, sj} ∈ SE : si, sj ∈ SNΩ}. This
gives us our scaffolding graph (SNΩ, SEΩ). We will also make the following definitions
to ease the rest of the discussion.

Definition 4.2. The adjacent node set to a supernode si ∈ SNΩ is the set
Adj(si) = {sj ∈ SNΩ : ‖sj − si‖ = lij}.

Definition 4.3. The boundary supernode set of a superedge se = {si, sj} ∈ SEΩ

is the set BndyNodes(se) = (Adj(si) ∪ Adj(sj)) \ {si, sj}.
Definition 4.4. The boundary superedge set of a superedge se ∈ SEΩ is the set

Bndy(se) = {{si, sj} ∈ SEΩ : si, sj ∈ BndyNodes(se)}.
We will place the nodes of our network on the sections of the superedges inside

Ω, and space the nodes such that each point in Ω contained by a superedge is at most
ε from a node on that same superedge. We first choose an integer M ≥ 1 and let
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Ω

b

a

σ

2ε

(a) Diagram of network showing how nodes
(black dots) are placed and the leaving edges
(dashed arrows) for selected nodes.

Ω

a

b

(b) Diagram of network approximation to
a continuous path. The triangles are the
p(sk)’s and the larger circles are the corre-
sponding vk ’s.

Fig. 4.2. These diagrams illustrate node placement, arc choice and path approximation in
κ-regular networks.

ε = 1√
3M

δ. This makes ε the length of the side of a tessellation triangle divided by
2M . We then use the following procedure to place nodes on the superedges, producing
our node set V :

For each superedge se = {si, sj} ∈ SEΩ,
1. If si ∈ Ω, place a node at a distance ε along the superedge from si and

place subsequent nodes at a distance 2ε as long as each node is placed
inside Ω. If the next node to be placed is outside Ω and if the intersection
of the superedge and boundary of Ω is a distance greater than ε from the
last node, or it is the first node to be placed, we place a node on the in-
tersection of the boundary of Ω and se; otherwise we do not place a node.

2. Else If sj ∈ Ω, follow rule 1 but start at sj instead of si.
3. Else If si, sj /∈ Ω, and there exists x ∈ Ω such that se contains x, we

start by placing a node at one of the intersections between the superedge
and the boundary of Ω. We then place nodes at intervals of 2ε until the
next node to be placed would be outside Ω. If the other intersection se
and the boundary of Ω is a distance greater than ε from the last node, we
place a node at the other intersection of the superedge and the boundary.

4. Else If there does not exist x ∈ Ω such that se contains x, then we do
not place nodes on that super edge.

The above procedure defines our node set V . An example of the placement of nodes
can be found in Figure 4.2(a). Next, we define the edge connectivity in our network
but first we make the following definitions.

Definition 4.5. For node i ∈ V \ {a, b} its boundary superedge set, Bndy(i),
is the set Bndy(se) where i is contained by se. This is well defined as each node in
V \ {a, b} is contained by one and only one superedge. The boundary superedge set of
a is Bndy(a) = {se = {si, sj} ∈ SEΩ : si, sj ∈ Adj(a)}. Bndy(b) is not defined.

Definition 4.6. A point x ∈ Ω is contained in Bndy(j) for j ∈ V \ {b} if there
exists se ∈ Bndy(j) such that x is contained by se.

To create our edge set A we will place an edge from each node i ∈ V \ {b} to
every node v ∈ V \ {a} contained by Bndy(i). Note that no edges terminate at a
and that there is an edge ending at b from any node which contains b in its boundary
superedge set. Note, however, that no edges originate at b. Examples of edges are
shown in Figure 4.2(a).
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At this stage we have a network construction G that produces a network G =
(V, A) for a given instance I of the C-LCMCPP and parameter vector P ∈ S. We
now wish to check that each network produced is a (δ, ε, κ)-approximation network.

For any path p ∈ Γ from a to b, we will construct its network approximation in
G = (V, A) in the following manner and show it satisfies the properties of Definition
3.1.

1. Let k = 0, v0 = a, and s0 = 0 (meaning p(s0) = a).
2. Let k = k + 1. Let sk ∈ (sk−1, 1] be the smallest value such that p(sk) is

contained in Bndy(vk−1).
3. Let vk be the closest node in V \ {a, b} on the superedge containing p(sk).

If p(sk) is located on a supernode, it will be contained by many superedges.
In this case we choose vk to be the closest node on any of the superedges in
Bndy(vk−1) containing p(sk), breaking ties arbitrarily.

4. If b is contained in Bndy(vk−1) and if there is no s ∈ [sk, 1] such that p(s) is
contained in Bndy(vk), then let vk = vN = b (replacing the last choice of vk

made in step 3) and sk = sN = 1 and stop. Otherwise go to step 2.
For any path p ∈ Γ we have thus produced two sequences (v0, v1, . . . , vN ) and

(p(s0), p(s1), . . . , p(sN )) with vk ∈ V for k ∈ {0, . . . , N} and 0 = s0 < s1 < . . . <
sN−1 < sN = 1. An example of the sequences (v0, v1, . . . , vN ) and (p(s0), p(s1), . . . ,
p(sN )) for a particular path and network is shown in Figure 4.2(b).

The Euclidean distance from any point on a superedge to any point on the bound-
ary superedge set of that superedge is greater than or equal to δ; see Figure 4.1. We
can see that as p(sk) lies on the boundary superedge set of the superedge which con-
tains both vk−1 and p(sk−1), we have ‖p(sk) − p(sk−1)‖ ≥ δ for k ∈ {2, N}. Also, all
points contained by the boundary superedge set of node a are a distance greater than
δ from a so ‖p(s1)− p(s0)‖ ≥ δ as p(s1) is on the boundary superedge set on node a.
Thus Condition 3(a) of Definition 3.1 is satisfied.

The point p(sk), k ∈ {1, . . . , N − 1} will be approximated by the nearest node
on the same superedge. Nodes are placed on superedges such that any point on
the super edge is at most ε away from a node, and thus the spacing of nodes will
satisfy the condition ‖vk − p(sk)‖ ≤ ε , ∀k ∈ {1, . . . , N − 1}. As a = p(s0) = v0 and
b = p(sN ) = vN , we satisfy Condition 3(b) of Definition 3.1.

By having edges run from each node i ∈ V \ {b} to all the nodes contained by
Bndy(i), we can see that the edges required by a network approximation (v0, v1, v2,
. . . , vN−1, vN ) to any path p ∈ Γ, that is the edges (v0, v1), (v1, v2), . . . , (vN−1, vN ),
are in A. This satisfies Condition 3 of Definition 3.1.

To define the regions Rv we make the following definition.
Definition 4.7. For supernode si ∈ SNΩ the closed region Reg(si) = {λsi +

(1 − λ)(μsj + (1 − μ)sk) : λ, μ ∈ [0, 1], {sj, sk} ∈ SEΩ, {sj, sk} ⊆ Adj(si)}. For a
set of supernodes, we will extend the definition of Reg(.) to be the union of the set of
regions for each supernodes, i.e., Reg({si1, si2, . . . , sin}) =

⋃n
k=1 Reg(sik).

The region Reg(si) will generally be a regular hexagon around supernode si,
except where the network is truncated near the boundary of Ω.

The regions Rv, v ∈ V \ {a, b} in Definition 3.1 are satisfied in our construction
by the regions Reg(se) ∩ Ω where se is the superedge containing node v with the
exception of the case where b is contained by the boundary superedge set of se, in
which case Rv is given by Reg(se∪sb1∪sb2)∩Ω where sb1 and sb2 are the superedges
in the boundary superedge set of v that contain b. Examples of the regions near node
b are given in Figure 4.3. For node a, Ra = Reg(a) ∩ Ω except in the unlikely case
that the boundary of a contains b. In this case Ra = Reg({a} ∪ sb1 ∪ sb2) ∩ Ω where
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b

sb

sb

se

1

2

N−1 seN−1

b

sb

sb

1

2 sb1

seN−1

b
sb2

Fig. 4.3. Diagrams of the shapes of the regions around end node b.

sb1 and sb2 are the superedges in the boundary superedge set of a that contain b.
Each of the regions can be enclosed in a circle of radius at most 4√

3
δ. This means κ

for our construction is 4√
3
.

For path p, the section of the path from p(sk−1) to p(sk) and the points on the
edge from vk−1 to vk given by λvk−1 + (1 − λ)vk for λ ∈ [0, 1] are entirely contained
in the region Rvk−1 for k ∈ {1, . . . , N}. This satisfies the need for the regions Rv for
v ∈ V \ {b} and Condition 3(c) of Definition 3.1.

Thus for any instance I = (Ω, F, L, a, b) of the C-LCMCPP, the network G(I, P )
for P ∈ S produced by our cellular network construction will be a (δ, ε, κ)-approxima-
tion network.

We now wish to show that our cellular network construction is a κ-regular network
construction. For any instance I = (Ω, F, L, a, b) of the C-LCMCPP, consider the
network G(I, (k, 0, k)). This network will be a (δk, εk, κ)-approximation network for
δk = ‖a−b‖√3

2k , εk = ‖a−b‖
2k2 , and κ = 4√

3
.

Noting the requirements of Definition 3.5, we see that for any instance I of
the C-LCMCPP there is a sequence of parameter vectors (P1, P2, P3, . . . ) = ((1, 0, 1),
(2, 0, 2), (3, 0, 3), . . . ), a sequence of δ values (δ1, δ2, δ3, . . . ) =

(‖a−b‖√3
2 , ‖a−b‖√3

4 ,
‖a−b‖√3

6 , . . .
)

with limk→∞ δk = 0, and a sequence of ε values (ε1, ε2, ε3, . . . ) =
(‖a−b‖

2 ,
‖a−b‖

8
‖a−b‖

18 , . . .
)

with limk→∞ εk

δk
= 0, such that G(I, Pk) is a (δk, εk, κ)-approximation

network. Thus the cellular network construction outlined in this section is a κ-regular
network construction with κ = 4√

3
.

5. Numerical experiments. In this section we will test our κ-regular network
construction method numerically. We implemented the lower bounds scheme in two
different ways. Both schemes use Mathematica to calculate the node positions but
differ in the method of calculating edge costs. In the Gaussian scheme, we used
Mathematica to explicitly calculate the edge costs in the network using three-point
Gaussian quadrature. These edges are then exported to a WCSPP solver written in
C++. The trapezoidal scheme instead uses Mathematica to calculate function values
at each node which are then exported to the WCSPP solver which calculates edge costs
on the fly using the trapezoidal rule. The Gaussian scheme is more accurate, especially
for smaller networks, whereas the trapezoidal scheme is faster as it utilizes the fact the
edges share start and end positions and thus needs fewer function evaluations. The
number of function evaluations is equal to the number of nodes for the trapezoidal
scheme, whereas it is a multiple of the number of edges for the Gaussian scheme. The
trapezoidal scheme also allows larger networks as the edges are not stored explicitly.
Note that while it would be possible to calculate edge costs on the fly using Gaussian
quadrature, this was not implemented.

For both schemes, ΔG was found by numerically finding the maximum and min-
imum value of F (x) for each region Rv, v ∈ V \ {b} using Mathematica. Note that
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0 0.25 0.5 0.75 1 1.25 1.5
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1.5

(a) F1(x, y)

0.25 0.5 0.75 1 1.25 1.5
0

0.25

0.5

0.75

1

1.25

1.5

(b) F2(x, y)

Fig. 5.1. Contour plot of functions F1(x, y) and F2(x, y) overlaid with the nodes of cellular
network with parameters (i, j, M) = (24, 0, 24). The lighter regions have higher function values.
The shading scale on the two plots is not the same. Some parts of the region which are not length
feasible have not been meshed. The edges are not shown to avoid cluttering the diagram. The
paths corresponding to the upper bound in the cellular network are the solid white lines. The paths
corresponding to the relaxed weight constraint L̄(1 + γ) are the long dashed lines. Both problems
were solved using the Gaussian scheme. We also calculated the upper bound paths given by a grid
network of 721 by 721 nodes which are shown as the short dashed lines. We can see that the cellular
network produces a smoother path than the grid network. Note that the paths are all piecewise linear
and have not been smoothed in anyway.

all nodes on the same superedge share the same region Rv; thus only one calculation
per superedge is required. We used a γ calculated by the formula

(5.1) γ =
2√
3M

+
2

3M2
,

where M is the number of nodes per side length. Note that we have used the pes-
simistic choice of c1 = c2 = 2 in (3.2) to calculate γ. The calculations were performed
on a Pentium 4 2.4GHz with 512Mb RAM running under Linux.

We use two test functions. The first is F1(x, y) = x. For the second we define a
constituent function:

Gφ1,φ2,σ(x) =
1

πσ2
e−

(x1−φ1)2+(x2−φ2)2

σ2 ,

and use the following as our test function,

F2(x) = G.3,.3,.5(x) + 0.5(G1.3,.4,.4(x) + G.5,1.2,.4(x) + G1.2,1.2,.4(x)).

For both F1 and F2 our region Ω is the closed square with corners at (0, 0) and
(1.6, 1.6). The start point a is (0, 0) and the end point b is (1.6, 1.6). The weight limit
L̄ is 1.1 times the distance between the start and end nodes or approximately 2.489
units. Both functions are plotted in Figure 5.1.

Figure 5.1 shows an example of a network and path that results from our cellular
network construction for both F1(x, y) and F2(x, y). The solid white lines are the best
upper bound paths, found by solving the WCSPP calculation using L̄ as the length
constraint. This is our approximate solution to the C-LCMCPP for this network. To
obtain a lower bound, we use the relaxed weight constraint L̄(1 + γ) and solve the
WCSPP to get a lower bound path, which are the long dashed lines. The objective
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(a) Upper and lower bound. (b) Number of nodes vs number of
edges.

Fig. 5.2. The upper and lower bounds for the C-LCMCPP for the function F1(x, y) vs the
number of nodes. The squares are the lower bounds for i = M and the triangles are the results when
i and M are optimized for an approximately constant number of nodes. The stars are the upper
bounds for the i = M case and the diamonds are the upper bounds for the optimized i and M case.
We can see that the optimization offers an improvement on the lower bound. We can also see a
diminishing return on the improvement to the lower bound as we use more nodes. The number of
edges vs the number of nodes is also given in (b) in which the stars indicate the i = M case and the
diamonds indicate the i and M optimized case.

function values corresponding to these paths are J∗
G(L̄(1 + γ)) which are used in the

lower bounds formula given by (3.9).
For comparison we have shown the paths that result from using a grid network

with edges to the 8 nearest neighbors, shown as the short dashed line. We can see that
the paths are not smooth compared to the ones obtained via the cellular construction.
The number of nodes in the grid network was chosen to approximately equal the
average node density of the cellular network. The objective function values of the
grid network are also higher than that of the cellular network: 1.58602 vs 1.44257 or
9.9% higher for F1(x, y) 1.783 vs 1.734 or 2.8% higher for F2(x, y).

Figures 5.2(a) and 5.2(b) give the results of C-LCMCPP using successively larger
networks to improve the lower bound. The trials were aborted at approximately
300,000 nodes and 150,000,000 edges when the WCSPP’s became too big to solve
effectively due to computational memory limitations.

Two methods of choosing i and M were tested. In the first, we set i = M and
in the second we chose i and M so that they provided the best lower bound for an
approximately constant number of nodes. To do this we note that for our cellular
network

|V | ≈ Kvi
2M and

i ≈
√

|V |
KvM

.(5.2)

We approximate ΔG by

(5.3) ΔG ≈ KΔ

i
.

Substituting (5.2), (5.3), and the formula for γ, (5.1), into the lower bounds formula,
(3.9), gives

(5.4) LB ≈ J∗
G(L̄(1 + γ))

1 + 2√
3M

+ 2
3M2

− L̄KΔ

√
KvM

|V | .
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Fig. 5.3. The upper and optimum lower bounds for the C-LCMCPP for the function F2(x, y)
vs the number of nodes. The squares are the lower bounds calculated using the Gaussian scheme
and the triangles are the lower bounds calculated using the trapezoidal scheme. The diamonds and
the stars are the upper bounds calculated using Gaussian and trapezoidal scheme, respectively.

Given previous lower bounds calculations we can estimate the values of J∗
G(L̄(1+γ)),

KΔ and Kv, and then given a number of nodes |V | we can calculate an approximately
optimal value of M and use (5.2) to find i. We then vary i around this approximate
optimal value to find a local optimum and report this value as the optimal i and M
combination for a particular number of node in Figure 5.2.

The lower bound calculated by (3.9) steadily improves from being negative to
becoming positive at 2,717 nodes and 227,909 edges when i = M = 13 and increases
to within 21.5% of the upper bound at 318,946 nodes and 156,815,926 nodes when
i = M = 64. Optimizing the choice of i and M results in a slight increase of the
best lower bound to within 19.5% of the least upper bound using a network with
(i, M) = (108, 21) having 299,910 nodes and 49,165,143 edges.

Even though the smaller networks produce useless negative lower bounds, they
produce competitive upper bounds. The upper bound for i = M = 7 calculated
using a network of 404 nodes and 14,383 edges was 1.452 which was within 1% of
the best upper bound of 1.442 produced for i = M = 64 with 318,946 nodes and
156,815,926 edges. We can see that the upper bound converges at a much faster rate
than the lower bound. In light of the results of Zabarankin et al. [21], who compare
grid network solutions to analytic solutions available in specific cases, we believe the
upper bounds we compute to be very close to the corresponding global optima.

In Figure 5.3 we find the upper and lower bounds for a given number of nodes
using the optimal choice of i and M for the function F2(x, y). The accuracy of the
numerical integration is important in the smaller networks, which have longer edges;
thus the Gaussian scheme was used for small numbers of nodes. When the size of
the networks became prohibitively large for the Gaussian scheme we switched to the
trapezoidal scheme. The accuracy of the trapezoidal scheme improves noticeably
when the length of the edges is decreased; for example, for (i, j, M) = (74, 0, 6), which
produces a network with 40,358 nodes and 1,869,186 edges, the Gaussian scheme
produces an upper bound of 1.73661 and the trapezoidal scheme produces an upper
bound of 1.73614, a difference of less than 0.03%. The best lower bound found in this
case was within 27.4% of the best upper bound. The trapezoidal scheme was also
much faster with the above instance running in 1h51m using the trapezoidal scheme
as opposed to 7h27m using the Guassian scheme.
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Table 5.1

Percentage improvement in the upper bound when changing from a 8-nearest neighbor grid
network to a cellular with similar number of edges. The results are averaged over 15 different
functions. The standard deviation of the percentage improvement in the upper bound is given as std
dev and No indicates the number of instances in which the cellular network produced a better result
than the grid network out of the 15 instances.

(i, j, M) (6,0,3) (12,0,6) (24,0,12) (30,15)
grid width 21 88 364 572
|A| cell 3279 60508 1053426 2611897
|A| grid 3280 60900 1055604 2610612

L̄ = 2.489 % mean UB gain 9.3 12.8 11.5 11.5
std dev. 17.8 16.2 16.4 16.4
No 9 15 15 15

L̄ = 2.715 % mean UB gain 0.0 7.4 9.0 10.1
std dev. 13.4 8.0 8.4 11.3
No 8 15 15 15

L̄ = 2.942 % mean UB gain -6.1 0.5 2.2 1.9
std dev. 8.3 1.9 1.7 1.9
No 4 11 13 12

Surprisingly, the majority of the computational time was spent on evaluating
F (x, y) and/or evaluating line integrals, exporting data to the WCSPP solver, and
calculating ΔG rather than solving the resulting NP-hard WCSPP. As we were focused
on pushing the lower bound as high as possible, we tested some problems with ex-
tremely long run times. For example, the time for a complete run, that is, calculating
the node positions, calculating ΔG, calculating the edges weights, exporting the edge
data to the WCSPP solver, and solving two WCSPPs (for the upper and lower bound)
for F2(x, y) for (i, j, M) = (143, 0, 12) using 300,170 nodes and 28,302,752 edges was
close to 10 hours giving an upper bound of 1.734 and a lower bound of 1.259. However,
we were able to obtain reasonable upper bounds in much shorter times; for example,
it took only 6min 7sec to do the same calculation with (i, j, M) = (14, 0, 4) to get an
upper bound of 1.754, though the network was not large enough to provide a positive
lower bound.

Though calculating lower bounds can involve extreme computational effort, if we
are looking only for feasible solutions, then we can use much smaller networks and
get reasonable results. Given that the upper bound for cellular networks seems to
converge quite rapidly, we compared the values of the upper bound, thus the best
feasible solution found for the problem, to the upper bounds produced by 8 nearest
neighbor grid network with a similar number of edges. We again set Ω to the closed
square with corners at (0, 0) and (1.6, 1.6) and the start point to a = (0, 0) and the end
point to b = (1.6, 1.6). We used three different weight limits for each function: 1.1,
1.2, and 1.3 times the distance from the start to end point, respectively. Besides using
the functions F1 and F2, all the other functions we used were a sum of 15 Gaussians
of the form Gφ1,φ2,σ(x) with uniformly random centers, (φ1, φ2) ∈ Ω, and σ uniformly
random in the range [.1, .3].

Table 5.1 shows us that, as we would expect, in the majority of cases, the upper
bound produced by the cellular network is lower than that produced by a grid network
with a similar number of edges. The clearest trend is the mean percentage improve-
ment of the cellular network over the grid network improves as the weight constraint
is made tighter. The cellular networks also tend to do better than the corresponding
grid network when the networks are made larger.

We can also see that the variability of the improvement increases with the tighter
weight constraint. This may be due to the weight constraint forcing the choice of high
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cost arcs in the grid network as paths in the grid network are longer than they need
be due to the restrictions in the number of directions available.

6. Conclusion. We have produced a network approximation method to the con-
tinuous length constrained minimum cost path problem (C-LCMCPP) for which we
can show the network approximation converges to the continuous solution as the net-
work is enlarged in an appropriate manner. We then defined (δ, ε, κ)-approximation
networks and showed that for such a network, a lower bound can be calculated. We
went on to define a κ-regular network construction, which can produce a sequence
of (δ, ε, κ)-approximation networks such that the lower bound (and upper bound)
converges to the continuous optimum.

Having developed the theory, we then created a specific example of a κ-regular
network construction, which we dubbed a cellular network construction, and tested
it computationally. We were able to calculate lower bounds that came within 19.5%
of the best upper bound. We also found that the cellular networks produced upper
bounds that converged rapidly and that corresponded to smoother paths with lower
objective function values than the solutions produced by grid networks.

In the future, we wish to improve the lower bounds further. One possible method
is a nonuniform triangulation of space so that node placement better reflects the
contours of the underlying function. We also wish to explore the potential of iteratively
eliminating regions of space using lower bounds; this would allow better lower bounds
to be obtained for the same computational effort.

We may also look at restricting the underlying function to be a triangulated
surface to simplify function evaluations, given that this is the way many surfaces in
practical situations are represented. The function triangulation could be made to
coincide with the triangulation of the cellular network. Implementing this method of
function evaluation in C++ would offer a significant speed up to the algorithm over
using analytical functions in Mathematica.

The cellular network concept may also be applied to higher dimensional spaces.
One could imagine the cells becoming interlocking polytopes with nodes placed on the
facets of these polytopes. While the theory underlying such a construction may be
relatively straightforward, the number of nodes required by the discretization would
grow enormously. However, given that the upper bounds for two dimensional networks
converge rapidly, it may be possible that useful upper bounds for higher dimensional
problems are attainable.

Lastly, we may wish to change the length constraint to a constraint with the same
form of the objective function. This would allow more versatility in the application
of the theory to practical situations. The main challenge here would be proving
that suitably relaxing the constraint guarantees that a network approximation to an
optimal path exists.

Acknowledgment. We would like to thank Tim Robinson for setting us on this
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